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LOCAL DEPENDENCE AND POINT PROCESSES OF
EXCEEDANCES IN STATIONARY SEQUENCES .
[~ by
J. Husler -
v :
;
Summary :
The point processes of high level exceedances are investigated E
under a weak mixing condition restricting the long range dependence .
of the stationary sequence. Depending on the local dependence, -
the asymptotic properties of the clustering of the exceedances -
’ and the cluster size distribution are found. This is described :
¢
by the convergence of the point process of high level exceedances ;
to a compound Poisson process. i,
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1. Introduction
Let X],Xz,...be a stationary sequence of r.v, with F(x)=P{Xisx}.

Assume that there exists a sequence {u } . such that n-?(un)+1>0,

n=1
as n> ©,where F(x)=1-F(x). Furthermore we assume that Leadbetter's

D(un) holds, i.e. for any choice of integers

1si]<i2<...<ip<j]<...<jp.Sn, j]-i > ¢

for any n,¢,p,p' we have

IP{Xi <u

(e Xy SUpeXy Xy .sun}- P{X, <u,...X, sun}P{Xj TIPS S 1

P 1 P 1
San,‘e
where for sequences {kn} and {Zn}
kn'zn = o(n) and kn'an’£n= o(7).
(see e.g. in Leadbetter, Lindgren and Rootzen (1983)).

For such a k define ro = [n/kn] and let

ir
N (i)=§ " 1(X,>u ) i=1,...,k
"o 3T n
be the numbér of exceedances in the ith block.
irn-l
Similarly, let Nﬁ(i)= y l(Xj>un)

j=(1-l)rn+1

be the number of exceedances in the .ith block, where the last

lh indices are deleted. In this case the blocks are separated

by Kn.

The cluster sizes Nn(i) define now the marked point process Yn on (0,1] x IN
by setting: Yn has a point at (i/kn,j) if Nn(i) = j>0. In the same way the

marked point process Yn on (0,1] x IN is defined by replacing N, by Npe




L;l:I
N
=
< 2
:-J,
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~
j: We give sufficient conditions on {Xi} such that Yn converges in
-h
‘.':': distribution to a Poisson process Y on (0,1] x IN. Define the
'.
, = projection m of point procysses in (0,1] x IN onto (0,1] by setting
o = T i = i
X m{u) ZBJeréT]. for any point process u ZBJ.GT. with
L, J J
Wi _ . . . .
_ Ty = (T]J.,sz) e (0,1] x IN. Since the Yimit process Y is simple,
- BJ.E] and Z = w(Y) is a compound Poisson process. By the continuous
1o .
f mapping theorem we find therefore that the point process Zn = w(Yn)
.\ of exceedances of the level Up in (0,1] converges in distribution to Z,
i.e. with the points 1’/|r-n such that Nn(i) >
’
:Z: The proof uses a theorem of Kallenberg (1976). Since the
,}:‘: 1imit point process Y is simple, it is sufficient to prove that
‘,-. (1) EYn(B) o EY(B) for any B = (a,b] x N
- where o<a<b<l and N <« IN
o
X and
)
3 (2) P{Y (B) = 0} s+ P{Y(B) = 0} for any finite union B
:\‘: of disjoint "rectangles" as defined in (1).
5 In the second section we deal with the cluster size distribution,
= i.e. mainly with the statement (1). In Section 3 we give a
LS
o sufficient condition such that (2) holds, which then implies our
¢ Timit result. In the last section we discuss two examples,
}"2 which exhibit two possible cluster size distributions which are
‘ concentrated in the first case on a finite number of points and '
. in the other case on an infinite number of points.
,:
3
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2. The cluster size distribution

In this section we deal with the probability law of the
marks on IN,i.e. with sufficient conditions such that
b (A) P{Nn(l) = k]Nn(l)zl} no Mk for all k21.

Define Eﬁs) - K PAX, > seeesXy >u )

n zsil<iz<...<issrn 1 s N

for all s21, where u_ is such that n?kun)-» ™0
Let

inf {s: Ijﬁ Eﬁs) = 0} if such an s exists
S0 © © otherwise
Then we use the following conditions:

(3) i) If s, < @ assume that Eﬁs) 3, ag forall s <s

o
ii) If S,° © assume that En(s) > ag for all s and that

skas + 0 as s » = for all k<ko

n

2L T [y (k-4 o .
where k inf {k.z_ (-1) " ( Y )°k+i 0} if such a k exists

i= -1
@ otherwise

Furthermore we assume that

(4)  3°(-1) 1050 where E¢5) & o for all s<s. and a0 if 5= =
) izl - a;>0 where E 77 = o for all s<s/ s 0. ™

E This assumption is related to the case of a positive extremal

) .

5 index 6 (see Leadbetter (1983) Corollary 3.5) since the sum in

E (4) is equal to 6t. Thus we denote in the following {(-I)"]ai = gr.
; We show now that an asymptotic measure p on the marks exists,

3 ) which gives the limit probability law in (A). By stationarity

é P{Nn(i) = k| Nn(i) z 1} = P{Nn(l) = kINn(l) 2 1} for all 1skn. For
; the right hand side we have the following 1imit result.
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' Lemma 2.1: Assume that (3) and (4) hold. Then for all iskn

s PN (3) = kIN (1) 2 1} » 1 for all k21, as nxs,

N n .

:\ S o S 0

N _ i-k,i i-1

5 where u = (Z (-1) (k)ai)/gz (-1 ai) for )
i=k i=]

N k<ko, Wy = 0 for kako with ko = so if so<w.

- Proof. 1) We assume So < By the Bonferroni-inequalities, for odd so

(1) _ (2) (s )
knP{Nn(l)zl} <ET =BT 4+ E 0
and
(1) _ e(2) (s -1)
knP{Nn(l)al} > En - En +...- En 0
Taking the 1imit we find by using @ = 0 and (4)
° 30 i-1
Tim knP{Nn(l)zl} =7 (-1) a; > 0,
n- i=0
which holds also if So is even.
For P{Nn(l)}zso}we find that knP{Nn(l)zso} < Eﬁso) + 0 as n -+ -
thus M © 0 for all k 2 So°
Using the Bonferroni-inequalities again, we have for so-k even
= (k) _ (k#1y(ke1) Soye >0
knP{Nn(I) k} < En - ( K )En +...4 (k )En
and (k)  k#ly (k+1) So71yc(s,-1)
knP{Nn(l) = k} 2 En - ( k )En +o..- K )En ()

Taking the limit we have

s . L s
Hn K PN() = )= B 0y

N2
which is also true if so-k is odd. This implies our statement. .
2) Let us assume now Sy = ™ As in 1) we have
00 ,-]
lim k PN (1)21} = § (-1)
no MM 39 o

since as»q and also
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i: r -
- o iek, iy (i
g knP{Nn(1) = k} —izk(-]) (k)En
i Let Py = Tim sup k P{N (1) = k}, p, = Viggnf k PIN (1) = k),
"._:: N —
o
:{j Then by the Bonferroni-inequalities we have for any even s and k<ko
R s+k#l ., . stk .
B¢ i-k, i - i-k, 1
=~ iZk (1) ey < py < By S'gk(-]) (o
I - - 1=
o The two bounds differ by (¥*3*1) = 0(s%,, 1) = 001
Ny ounds differ by K %%assy = 00Ty 0q) = 0(1) as s,
‘_} bv assumption (3). This implies as in the proof of Corollary
-
jig 3.5 of Leadbetter (1983) that
. — . T i-k, i
o py = p, = 1im k PIN (1) = k} = ¥ (-1)""%(a,,
Tk Tk e n N i=k ki
gﬁz which gives our statement.
;Ji If ky<©, we observe that u, = 0 for all k 2 k,, for
- : . . )
k PIN (1) 2 k } < §° (-1)3(Ko=THyglkg*d)
. n'n o’ .. n
A J-O ko-]
"»°,
W™,
R for any even j (see Feller (1968) p.110). Thus
'?7-,: _ J . 1+
N B <30 (D30 g ,
) o J=0 k,-1 o J
>, and similarly j_-1 -
3 b+ e e
- o J=0 k_ -1 oV’
A k -1 °
N . . - - .
e The two bounds differ by 0((k°+J°) 0 “k°+j°) 0(1) as jo=.
<~ By the same argument as in i) we find
- @ i =14
pk 5.2 ('1)J(ko ! j)QK +j = 0. O
o Jj=0 ko-l (4}

Remark 2.2 It is obvious that u is a probability measure on the

set of marks. For

20 %0 (_1yickehyy = 30, 3 (1yivkehy = $01) 11 - o
A R A R L
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\; To prove (1) we use weaker but less explicit conditions than (3) and

o |

':: (4). Suppose 4

Y i

2 (6) kPN (1) 2 1} > 61 f

3 d for 8 ¢ (0,1], 0. . {
|

As mentioned above, (4) implies (6).

R Lemma 2.3: If (A) and (6) hold, then
2 E(Y, (B)) > E(Y(B)) = or(b-a)u(N) = Axu(B)

l: with B as in (1),  u(N) =} M, and )=8Tm where m is Lebesque measure.

keN
A4
fﬁ Proof: By stationarity we have
N E(Y (B))=} PIN (i)eN} ~k (b-a)P(N (1) 2 1} PIN (1)eNIN (1) 2 1} .
e(k a,k bl
\ n n
- ~(u(N)}+o(1))k (b-a)6tk™" > e(b-a) u(N). y
‘5 Remark 2.4: Obviously, condition (3) and (4) imply the assumptions
of this Temma by Lemma 2.1; thus (1) holds if the explicit conditions

. (3) and (4) are satisfied.

: Finally, we show that also the conditional probabilities in (A) }
;: with respect to N; converge to if (A) holds.
2 Lenma 2.5: Assume that (A) and (6) hold. If k £ =o(n), then

L ) '

- P{Nn(l) = kan(1) 21} » My as M, k21. ‘
v Proof: We have for any k21

= -1
;; < PN (1) 2 k} -P{N (l)zk} stJ P{X;>up} = £ F(u) = ofk "), !
-
where J = {rn-ln +1,... oy }. Thus for k > 1
- 0 o0 pLR? H1) >k PIN(1) > Kk} +o(k)) PN (1) > k) o
- P{N'1>kN1>1}=—r—.-(-.|-)————T N = o)),
A > 1 P{N(1\>”+n(k\ PN, (1) > 1}
)
¢

since P{N (1) > 1} ~ o7k ], 6>0. This completes the proof.
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3. The Poisson limit

In this section we mainly deal with the statement (2). 1In the
first step we show that in (2) we may replace Yn by Yﬁ'
Lemma 3.1: If kn-zn = o(n), then for any B as in (2)
(7) P{Yn(B) = 0} - P{YA(B) =0} +0asn -+ o,

Proof: Without any restriction we may assume that B is of the form

J _
(8) B = £;4 (25051 x Ny)

where Osa]<b]sa2<b25...saJ<bJsl, Jz1, Njc N,

For simplicity of notation we give the proof for J = 1, i.e.
B = (a,b] x N. Then the difference (7) is, with In = (kna,knb],
bounded by the two terms
. . " s . c
P{(Nn(1)¢N, Vi e In) n (Nn(1) ¢N, ic In) }
ard
. N C I .
P{(Nn(1) £ N, Vie In) n (Nn(1) £ N, Vi e In)}.
The first term is bounded by
(9) PFie I.: N()£NaN()eN < T PING) ¢NaN() N
ieln
= |In| P{Nn(1) ¢ Nn N;(]) e N}
by stationarity. The last event implies that there exists some

je [rn-£n+1,rn] such that Xj>un. Thus (9) is bounded by

O(kn-zn- F(un)) = o(1).
In the same way the second term is bounded. 0
Thus it remains to prove that

J
(10) P(Y!(B) = 0} > exp (-eTjZ](bj-aj)u(Nj))

where B is as in (8). The proof of this statement is simple, if

the measure u is concentrated in one point k ¢« IN. This is e.a.

N P O R o

),
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the case if the condition D'(un) of Leadbetter (see Leadbetter,
Lindgren and Rootzén (1983)) holds; i.e. u]=1, uk=0 ¥ k>1. The proof
follows the idea of the proof if D'(un) holds.

Lemma 3.2: Suppose D(un) and (6) hold. If (A) holds with uk=1 for

a k21 and u,=0 Vi # k, then (10) is true.

In this particular case Z (b -a, )u(N )y =) (bj - 33), where we do
J=1 j=1

not count the rectangles ((aj,bj] x Nj) with Nj n {k} = ¢, i.e.
J!
Bn ((0 1] x {k}) = U ((ajsb3] = {k}) = B".
j=1
Proof: i) We show that P{Y! (B) 0} = P{Y (B') =0} + o(]) Since

J
Yé(B) z_YA(B ) we have for I LJ (k ajs kb ]

<) PN (1) e W\ {k}}

0 < P{Y'(B') = 0} - P{Y'(B) =
- n n 1eI

= |1 IPIN (1) > T}PIN (1) # k | N (1) > 1} = O(k "k T o(1)) = o(1),
since (6) implies P{Nn(1) > 1} ~ ot/k, -
‘s v Y . v 7sy o ' .
ii) Let I = L_! (knaJ kan] Since {N{ (i) =0, Vi ¢ In}

| n

IN'(T) £ k, Wie I0}= {Y[(B') = O}, it follows that
< PIN(§) # k, ¥ie I} - PINL(E) = 0, ¥i e 10} 51§I'P{N;(i) ¢ {0,k} }

()

n

(K, Ky (1) = o(1) as in 1).
iji) Let A; = {Na(i) = 0}. Then by enumerating the i's in

I; as 1],12,...,1. with jn = |16|, we get

Jn
IP(N' (i) = 0, i e I'} -1 PN (i) = 0} | <
n " el
f n’f.' fd‘o"/'f.fn o v Q’."f'f(*f ﬂf‘t: 4\#\\"'1’ q' q‘ '\' -‘.’-\..*- ;"- n \\
-s\\t'.{:\'. .:'( '-'Q\{\ .. :‘t&i:f. e \ {Iﬁ.ﬁ. 'I;.(‘..u.{;_ AOPCAC L VL ¢ .f‘f,.) l\ﬁ
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in”! hAdl J
(10) < 1P(n A;)-P(nA )P(A )],
=1 k1 Tk k=1 'k 1541

Since the index sets are separated by Ln, it follows

by D(un) that each term in (10) is bounded by a"’ln. Since IIal =i,

we see that (10) is bounded by O(k ‘o ne, ) = o(1) by n(u ). Finally

In o1 + o(1)y9 J'

T P(A, RS R (- ——] "+ ewimn ] (b} - a3)) as
k=1 n j=1

n->», by (6). 0

We have therefore in some particular cases the desired result.
Theorem 3.3: Assume that the stationary sequence {Xk} satisfies D(un).
(R) and (6). If the measure u is concentrated in a sinale point
k > 1, then

d
Yn +Yasn->o

where Y is a Poisson process on (0,1] x IN (concentrated on (0,1] x {k}).

Thus the projection Z = n(Yn) on (0,1] converges in distribution

to the projection w(Y), which is a compound Poisson process with
compounds identical to k.

Remark 3.4: The particular case when D(un) and D‘(un) hold, is
included. For D'(un) implies a2=0, thus so=2, Eﬁl) +>1>0

and My = a]/a] =1, W = 0 for k > 1. Thus (A) and (4), therefore
also (A) and (6), are satisfied.

Remark 3.5: Since (3) and (4) imply (A) by Lemma 2.1, the theorem is
also true if (A) and (6) is replaced by (3) and (4).

For general situations of the mark measure u, we need a stronger

condition D* instead of D.
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Condition D*(un): We assume that for any integers n,¢

* *
sup | P(AnB) - P(A)-P(B) | <o, panda,  , +0asn~w,
A,B ? *“n

where A ¢ o{U],Uz,...,Uk}, Beo {Uk+£+1’uk+ FITIERr n} for any k
with U; = I{Xi > un} and a suitable sequence £n=o(n).

*
Note that D (un) is still weaker than the strona-mixing condition.

Let the measure Axu be defined by Axu(B) = GTZ(bj-aj)u(Nj) for B as in

(8). ’

Theorem 3.6: Assume that the stationary sequence {Xn} satisfies
D*(un), (A) and (6). Then Yn 4 Y where Y is a Poisson process on

(0,1] x IN with intensity measure Axu. Thus the projection
d

Zn = n(Yn) + w(Y) = Z with Z a compound Poisson process where the

probability law of the compounds is given by u.

Proof: By Kallenberg's Theorem and Lemmas 2.3 and 3.1, it is
J

sufficient to prove P{Y {B) = 0} » exp{-6t Y (bj-aj)u(Nj)) with B
2y

as in (3). Now analogously to the proof of Theorem 3.3
J
P{Yn(B) = 0} = P{jzl (Nn(I) ¢ Nj’ ie (knaj, knbj])} =
J Tl 21

=1 T P{Ai}+2{P(nA-)-P(

n
i=] 1§ = =1 ! =
j=1 1e(knaj,knbj] £=2 k=1 'k k=1

where Ai = {Na(i) ¢ Nj} with j = j(i) and by enumerating the i's
. J . :
in I -§;4(knaj’knbj] with i, .

Aik)'P(Ait)}

Each term of the sum is by D*(un) bounded by a: 2 since the index
*n

sets are separated by ln. Thus the sum is bounded by

O[Ty lan 5 ) = Olky 5 ¢ ) = 01

*
n,ln)
*
n,t

by choosing k such that kna o(1) and k.2, = o(n)

n
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*_1L 1
(e.qg. k, = min (an é ,(n/ln)z). Finally, the product is equal to
*“n

k (b.-a.)
J k (b.-a;) J otu(N.) + o(1) Y*n'®;
m [PIN (1) ¢ N.1) LU B A A ﬂ J

j=] J ! " 4

2

J
> exp (<07 ] (bs-a;) u(Ny)) = exp (-2 (B)) by using (6).
j=1

Corollary 3.7: The statement of Theorem 3.6 is true if (3) and (4)

* A
hold together with D (un). h

4. Examples
In this section we discuss two examples exhibiting the particular

cases given in Theorem 3.6 with Sg < and g = =

1) An example, given in Haiman (1981), illustrates also Corollary

3.7 with SO < o, Let {”k}kzp be an iid. sequence with continuous

distribution function F(x). Let {Jk}k> 1 be another iid. sequence,
independent of {”k}’ with Jk Bernoulli (p), i.e.

0<P{y =0}=gq =1-p =1-P{g =1} <1.
Then define Xk = nk_Jk. Obviously, {xk}kzﬁ is strongly stationary

with marginal distribution F(x). Let uq be such that ﬁ?(un) = 0.
Note that {Xk} is 2-dependent, thus D(un) and D*(un) hold with any :
kn= o{(n). We show now that (3) and (4) are satisfied. For
£ -k T (r-3) POGoU, Ko} = k (1) PUKU, Xo>u}
n n‘].=2 n 1""n® 7§ 'n n''n 1"%n® "2 n
+0(kr2 F2 (u) = qpk(r-1)F(u)+0(k') >tqp, since k r - n
nn n n''n n n ’ nn

and P{X; >u X, >u} = ap ?1un) +(1-qp) Fz(un).
Furthermore we find that E£3) is bounded by O(knr:?Q(un)) = o(1).
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fi? Thus a) = T, &, = Tq P , a3 =0, 55 = 3. Thus (3) and (4) hold

::. with 6 = r'](r -19p ) =1-gqp > 0. Finally

wy = (1-2-qp }/(1-ap ) and u, = g p /(1- qp ).
;i;: Thus Corollary 3.7 implies that the number of exceedances of the level

;;;: uy in (0,1] is asymptotically compound Poisson with mean number of |
7fé§ clusters equal to 61 where the size of the clusters is either 1 or 2

L4
1

with the above asymptotic probabilities.

o A

et

o v

2) The second example exhibits the case Sg = ®- We use the example of
Denzel and 0'Brien (1975) of a "chain-dependent" sequence {xk}k>1
defined by means of an eraodic Markov chain {Jk, k>0} with posi;}ve

integers as states and connected by

Sl
PR

PU, = 5.X<x X ok ) 30sdqseenndy 50dy oy = )

-

PU, =3, X< x93,y =i} = Pini(x), ¥.>1, 1,30,

- Pij are the transition probabilities, Pij = o, + (l-e)éij, with

i TN N

. = 1 for i=j, 0, other-

0 € (0,1), Iy = §75(341)7%, 1, 1 ;

= 1.0k
0-]-2 ,61

Ty e % %o
"-'x ! &' .',. '}v .'.u '.. .J' n"‘:
2 4 A

A'.

wise. Hi(x) are non-degenerate distribution functions defined in the following.

y
3%
LA
h o

\3 Let H(x) be a continuous distribution, H(x) = 1-H(x) and y; such that Yo = s
s ) . _ -1/2
.?_ H(y]) = I, H(yi) =Ty vy +o.4 0, =1 - (i+1) . Then let
..'\" B -1
;": H'i(x) = H'i (H(X) - H(yi_])) if ‘y'l-] <X < .V.i
: ] if x>y,
i;; In the stationary case (i.e. the distribution of JO isT= (HO’HI""))’
i;f Xn has the marginal distribution H(x). Since this "chain dependent"
A4
*
. sequence {Xn} is strong-mixino, the condition D ("n) is satisfied with
Y -
f:g u, such that nH(u ) = 1>0. A simple argument shows that
R
.y
'\' LA A IPLTS S T 15 Y ‘s ] S ) - j - ) "".\ N e N e
\ A N ST A A A 3 2 N NI EE A N TR Fy B T 0 T E P

}
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*
Yi(n)-1 =dy < u () < d, = Yj(n)

with j(n) = [nzlrz] and nﬁldn) + T, nﬁ(d:) + 1. Therefore we may consider

exceedances Nn(i) of the level dn’ which simplifies the calculations.

We have to prove that P{Nn(l)_z k|Nn(1)_3 1} -+ = (l-e)k'],

KL
¥k >1. Thus v is the geometric distribution on IN.
i) Note that following Denzel and O'Brien (1975)

g * -1
P{Nnﬂ) = 0} = P{Mrn < yj(n)} = {1-(1 + j(n))-%}{] - 8(1+j(n))" M

and thus

P{Nn(l) > 1}
ii) We deal now with P{Nn(l)

(1+0(1)) o rnﬁ(dn).

k}. We use that by the construction of

[ v

the sequence Xn and dn
{Nn(l) > k} = {# {i: Ji > j(n), i=0,...,rn-l} >k} = Ak

For k fixed we denote the times of the first k exceedances Ji>jn by

11,12,...,1k with 0 115125135...s1ksrn-1.

B={¥eg=1,...,k-1: i = izf]}.

241

In the following we consider the events Ak n B and Ak n Bc, and use
the following transition probabilities

a) P& = pig,, = nloy=i) = m(1-0-0)%) + (00 6y,

Vi>1, h>1, k> 1.

b) P:ﬁk) = P{dp,y = M 9y < 3(n)sinidy < 3(0)]3y = 1) =

- ~:_:~i~.:: -.3n'i\:@'iw.;.\&\&-?-:;\i
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2 k-2 .
0 H(dn)nh(1-eﬁ1dn)) if k>1

) i,h>j(n).
enh + (1-6)5ih if k=1

c) P:Lk)

om,, (1 - ofitd N if ko1, i<i(n), h>j(n).

By using these formulas, a straightforward calculation shows that

r_-k+1
k-1 q Tra yyi-2
P(A, n B) ~ (1-6)"" H(d ) (1 + BH(dn)iZ1 (1- 6H(d ) %),
-k-1
Since (1 - eﬁ(dn))r" =1 - ernﬁ(dn) + o(rnﬁldn)), we find that

P(A, 0 B)/PIN (1) > 1} > (1)K, o1,
Using the same formulas for P(Ak n Bc) we find that P(Ak n Bc)
= o(rnﬁldn)) = o(P{Nn(l).z 1}), which completes the proof on the
cluster size distribution u.
Therefore Theorem 3.6 implies that the point process Yn converges
to the point process Y in distribution with
u = 0-(1-0)*"T, k>1.
In the case 6 > % it is also possible to prove the conditions (3)
and (4). But for 6 < % condition (3) is not satisfied, thus showina
that (3) is not a necessary condition.
From the definition of B and the above derivation it follows also that

if the sequence Xk exceeds the level Uns then this happens consecutively

a geometric random number of times.

e e e ararey et ettt N et e
R .,:: ey L e e CIACCS R IRL R O
Lria i '

Pl

. A" R N g *
0N g
vadh ﬂsﬂaaﬁﬁd



References

Feller, W. (1968)

Haiman, G. (1981)

Leadbetter, M.R.
sequences”.

Leadbetter, M.R.,

- o™ -« q® PR - RS UL CL C Y N
":.\ \:,-.\-.-\.‘\"s S, '.'.-u".‘\.'.‘-\* i 59 DAL AT Rai s v,

applications".

Denzel, G.E. and 0'Brien, G.L. (1975) "Limit theorems for extreme
values of chain-dependent processes. Ann. Probab. 3, 773-779.

"An introduction to probability theory and its
Vol. I, 3 ed. Wiley, New York.

"Valeurs extrémales de suites stationnaires de

var1ab1es aleatoires m-dépendantes“ Ann. Inst. Henry Poincaré,
17, B, 309-330.

Kallenberg, 0. (1976) "Random measures." Academic Press.

(1983) "Extremes and local dependence in stationary
Z. Wahrscheinlichkeitstheorie 65, 291-306.

Lindgren, G. and Rootzén, H. (1983) "Extremes and

related properties of random sequences and processes." Springer
Statistics Series. Springer, Berlin.

"'\'\1 \\
AN i*\

N %
% LAt G AR LAY OO 0 hhSaih b

\\.-\\\"' ..'
\" : NS N agy






